skip to main content


Search for: All records

Creators/Authors contains: "Pearce, Christof"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. The northern sector of the Greenland Ice Sheet is considered to beparticularly susceptible to ice mass loss arising from increased glacierdischarge in the coming decades. However, the past extent and dynamics ofoutlet glaciers in this region, and hence their vulnerability to climatechange, are poorly documented. In the summer of 2019, the Swedish icebreakerOden entered the previously unchartered waters of Sherard Osborn Fjord, whereRyder Glacier drains approximately 2 % of Greenland's ice sheet into theLincoln Sea. Here we reconstruct the Holocene dynamics of Ryder Glacier andits ice tongue by combining radiocarbon dating with sedimentary faciesanalyses along a 45 km transect of marine sediment cores collected betweenthe modern ice tongue margin and the mouth of the fjord. The resultsillustrate that Ryder Glacier retreated from a grounded position at thefjord mouth during the Early Holocene (> 10.7±0.4 ka cal BP) and receded more than 120 km to the end of Sherard Osborn Fjord by theMiddle Holocene (6.3±0.3 ka cal BP), likely becoming completelyland-based. A re-advance of Ryder Glacier occurred in the Late Holocene,becoming marine-based around 3.9±0.4 ka cal BP. An ice tongue,similar in extent to its current position was established in the LateHolocene (between 3.6±0.4 and 2.9±0.4 ka cal BP) andextended to its maximum historical position near the fjord mouth around 0.9±0.3 ka cal BP. Laminated, clast-poor sediments were deposited duringthe entire retreat and regrowth phases, suggesting the persistence of an icetongue that only collapsed when the glacier retreated behind a prominenttopographic high at the landward end of the fjord. Sherard Osborn Fjordnarrows inland, is constrained by steep-sided cliffs, contains a number ofbathymetric pinning points that also shield the modern ice tongue andgrounding zone from warm Atlantic waters, and has a shallowing inlandsub-ice topography. These features are conducive to glacier stability andcan explain the persistence of Ryder's ice tongue while the glacier remainedmarine-based. However, the physiography of the fjord did not halt thedramatic retreat of Ryder Glacier under the relatively mild changes inclimate forcing during the Holocene. Presently, Ryder Glacier is groundedmore than 40 km seaward of its inferred position during the Middle Holocene,highlighting the potential for substantial retreat in response to ongoingclimate change. 
    more » « less
  2. We address here the specific timing and amplitude of sea‐surface conditions and productivity changes off SW Greenland, northern Labrador Sea, in response to the high deglacial meltwater rates, the Early Holocene maximum insolation and Neoglacial cooling. Dinocyst assemblages from sediment cores collected off Nuuk were used to set up quantitative records of sea ice cover, seasonal sea‐surface temperature (SST), salinity (SSS), and primary productivity, with a centennial to millennial scale resolution. Until ~10 ka BP, ice‐proximal conditions are suggested by the quasi‐exclusive dominance of heterotrophic taxa and low dinocyst concentrations. At about 10 ka BP, an increase in species diversity and abundance of phototrophic taxa marks the onset of interglacial conditions at a regional scale, with summer SST reaching up to 10 °C between 8 and 5 ka BP, thus in phase with the Holocene Thermal Maximum as recorded in the southern Greenlandic areas/northern Labrador Sea. During this interval, low SSS but high productivity prevailed in response to high meltwater discharge and nutrient inputs from the Greenland Ice Sheet. After ~5 ka BP, a decrease in phototrophic taxa marks a two‐step cooling of surface waters. The first started at ~5 ka BP, and the second at ~3 ka BP, with a shift toward colder conditions and higher SSS suggesting reduced meltwater discharge during the Neoglacial. This second step coincides with the disappearance of the Saqqaq culture. The gap in human occupation in west Greenland, between the Dorset and the Norse settlements from 2000 to 1000 years BP, might be linked to high amplitude and high frequency variability of ocean and climate conditions.

     
    more » « less